

TECHNICAL REPORT ON

BINDER CONTENT OF ASPHALTIC CONCRETE TEST PROFICIENCY 2019

CETANZ Technical Report	TR 11
Author(s)	V. Lord
Report Date – First Issue	4 April, 2019
Report Revision Date	-
Revision Number	1
Associated Test Method(s)	ASTM D272/ADL 4.02-15a/ASTM D6307/similar approved method

BINDER CONTENT OF ASPHALTIC CONCRETE TEST PROFICIENCY 2019

1. Introduction

In 2019, CETANZ organised and ran an inter-laboratory proficiency scheme on the Binder Content of Asphaltic Concrete, designed to achieve the following outcomes:

- 1. Provide results that should enable participants to improve their performance.
- 2. Provide information relevant for calculation of uncertainty.
- 3. Identify problems with, or between, laboratories.
- 4. Understand the differences (if any) between test methods.

The following Laboratories participated in the scheme:

Higgins Contractors Napier		
Higgins Contractors Auckland		
WSP Opus Hamilton		
City Care Laboratory CHCH		
WSP Opus Lower Hutt		
WSP Opus Auckland		
Road Science Tauranga		
WSP Opus CHCH		
Road Science CHCH		
Higgins Contractors Palmerston North		
Fulton Hogan Ltd -Waikato		
Fulton Hogan Ltd Wellington		
Fulton Hogan Canterbury		
Fulton Hogan Nelson		
Isaac Construction Ltd		

To ensure anonymity of results each laboratory was assigned a unique identifier by Keith Towl of IANZ.

2. Sample Preparation and Instruction

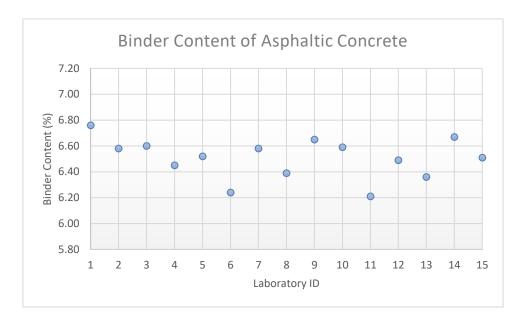
A bulk sample of NZTA DG7 production mix was sampled from a Christchurch Asphalt Plant and split down into smaller test samples. Each Laboratory was sent one test sample of between 1-2 kg each.

Each Laboratory was instructed to carry out testing by approved method from those below:

- 1. ASTM D272
- 2. ADL 4.02/15a
- 3. ASTM D6307
- 4. Similar approved method

Each Laboratory was invited to have one competent technician take part. Completed results were to be retuned identifying the Laboratory Number.

Laboratories could request more than one test sample, however only one sample from a competent technician was to be used for inter-laboratory analysis.


3. Results

Laboratory ID	Operator	Binder Content	Z Score	Method	Uncertainty	Results for Uncertainty	CETANZ Tool
1	А	6.76	1.6	In-house	±0.26	20	Yes
2	А	6.58	0.5	in-house	±0.5	20	Yes
3	Α	6.60	0.6	ASTM D2172			
4	А	6.45	-0.4	ADL 4.02/15A	±0.13	20	Yes
5	С	6.52	0.1	ASTM D2172-17 Method A	±0.34	4	Yes
6	Α	6.24	-1.7	ASTM D2172-17 Method A			No
7	А	6.58	0.5	ADL 4.02/15A	±0.098	4	Yes
8	А	6.39	-0.8	ASTM D2172-17	0.1	5	Yes
9	В	6.65	0.9	ASTM D2172-17 Method A	±0.35	20	Yes
10	А	6.59	0.5	BSEN 12697-1:2000	±0.29	16	Yes
11	А	6.21	-1.9	in-house	±0.18	20	Yes
12	Α	6.49	-0.1	ADL 4.02/15A	±0.067	20	Yes
13	А	6.36	-0.9	ADL 4.02/15A			No
14	А	6.67	1.1	in-house	±0.20	4	Yes
15	А	6.51	0.0	ADL 4.02/15A: 1990			

Note: Uncertainty is at 95% confidence

Mean	6.51
Median	6.52
Minimum	6.21
Maximum	6.76
1 Standard Deviation	0.15
2 Standard Deviations	0.30

Results Continued:

4. Analysis

For the purpose of analysis, results have been tabulated and put in graph format. Each participant will need to undertake their own analysis on the data provided to gauge their own performance.

5. Conclusions

The results indicate the possibility of a slight variance between test methods, however more analysis is required. All laboratories were within two standard deviations of the mean, showing there is consistency among the industry for the binder content of asphaltic concrete test method. Most laboratories are using the CETANZ Uncertainty of Measure tool.

6. Further action

Advise stakeholders of proficiency data and arrange for more in-depth analysis and publication of results.

7. Referenced Documents

ASTM D272 ADL 4.02/15a ASTM D6307

8. Disclaimer

The information in this publication is to encourage high standards within the civil engineering testing industry. The information is intended as a technical report for CETANZ members only and in no way purports to be a robust statistical analysis. CETANZ cannot accept any liability of any sort for unsatisfactory site or laboratory work carried out by Companies who are members of CETANZ or organisations who claim to be following this report. CETANZ assumes no responsibility for any loss which may arise from reliance on the report and disclaims all liability accordingly. Specialist and/or legal advice should always be sought on any specific problem or matter.